more on Merge tort.

Because we are dealing wits subporblems, we state each subproblem as sortie a subarray $A[p \ldots r]$ Initially, $p=1, r=n$, but fuse values change as we recurs furough subproblems.

To sort $A[p . . \gamma]$:
Divide by splitting into two arrays $A[p \cdot q]$ and $A[q+1 . . r]$, where g is tue halfway point of $A C p ., r]$.
Conquer by recursively sorting the two subarrays $A[p \ldots q]$ and $A[q+1 .$.$] .$

Combine by merging the two sorted nebarrays $A[p . q]$ and $A[q+\ldots r]$ to
produce a single sorted subarray $A[p . r$]. To accomplish this ste, we use a procedure MERGE (A, p, g, r).

The recursion bottoms out when tue subarray has just 1 element, so twat it's trivially sorted.
$\operatorname{Merge-Sort}(A, p, r)$

$$
\begin{aligned}
& \text { if } p<r \\
& q=\lfloor(p+r) / 2\rfloor \\
& \quad \operatorname{MerGe-Sort}(A, p, q) \\
& \quad \operatorname{Merge-Sort}(A, q+1, r) \\
& \quad \operatorname{Merge}(A, p, q, r)
\end{aligned}
$$

// check for base case
// divide
// conquer
// conquer
// combine

$$
q=L(p+r) / 2 J: \text { floor of } \frac{p+r}{2}
$$

Ex $\quad p=1, r=8 \Rightarrow q=\left\lfloor\frac{1+8}{2}\right\rfloor=\left\lfloor\frac{9}{2}\right\rfloor=4$
$A=[5,2,4,7,1,3,2,6]$: original array
$A=[1,2,2,3,4,5,6,7]$: Sorted array

$$
\begin{aligned}
& q=\left\lfloor\frac{1+8}{2}\right\rfloor=\left\lfloor\frac{9}{2}\right\rfloor=y \\
& q=\left\lfloor\frac{1+4}{2}\right\rfloor=2, \quad q=\left\lfloor\frac{5+8}{2}\right\rfloor=6
\end{aligned}
$$

$$
q=\left\lfloor\frac{1+2}{2}\right\rfloor=1, \quad q=\left\lfloor\frac{3+4}{2}\right\rfloor=3
$$

etc.

Ex $p=1, r=11 \Rightarrow q=\left\lfloor\frac{1+11}{2}\right\rfloor=\left\lfloor\frac{12}{2}\right\rfloor=6$

$$
A=[4,7,2,6,1,4,7,3,5,2,6]
$$

\Downarrow

$$
A=[1,2,2,3,4,4,5,6,6,7,7]
$$

$$
\begin{aligned}
& q=\left\lfloor\frac{1+11}{2}\right\rfloor=6 \\
& q=\left\lfloor\frac{1+6}{2}\right\rfloor=3, \quad q=\left\lfloor\frac{7+11}{2}\right\rfloor=9 \\
& q=\left\lfloor\frac{1+3}{2}\right\rfloor=2, \quad q=\left\lfloor\frac{7+10}{2}\right\rfloor=8
\end{aligned}
$$

More on merging
Let's discuss the MERGE procedure.
Input: Array A and indices p, g, r such that - $p \leq q<r$

- Subarray $A[p . g]$ is sorted and subarray $A[q+1$. I $]$ is sorted. By the restrictions on p, q, r, neither oubarray is empty.
Output: The two subarrays are merged into a single subarray in ACp.r.? We implement it so that it takes $\Theta(n)$ time, where $n=r-p+1=$ the number of elements being merged.
What is n ? Originally, we Shine of n as of the size of the problem. But now we're curing it as the size of a
subproblem. We will use Au's teangue When we analyse recursive algorithens. Although we nay denote tue original problem size by n, is general n will be tue size of a given subproblem.

Idea behind linear-tince merging
Think of two piles of cards.

- Each pile is sorted and placed face-up on a table with the smallest cards on top.
- We will merge fuese cards ito a single sorted pile, face-down on the table.
- A basic step:
* Choose sue muller of the two cards
* Remove it from its pile, thereby exposing a new top card.
* Place tue chosen card face-down onto tue output pile.
- Repeatedly perform basic steos until one input pile is empty.
- Once one input pile empties, just take the remaining input pile and place it face-down outs the outport pile.
- Each basic step should take constant tie, since we just check the two top cards.
- There are $\leq n$ basic steps, sine each basic step removes one card from the input fortes, and we start with n cards in the input piles.

We dou't actually need to clean whether a pile is empty before each basic totes.

- Put on tue bottom of each input file a special sentinel card.
- It contains a special value that we use to simplify tue code.
- We use ∞, since that's guaranteed to "lose" to any other value.
- The only way fiat ∞ cannot lose is when both piles have ∞ exposed as their top cards.
- But when that happens, all tue nousentinel cords have already been placed into tue output pile.
- We know in advance that there are exactly $r=p+1$ nonsentinel cards \Rightarrow stop once we performed r - $p+1$ basic steps. Never a need to clecle for sentinels, since they'll always lose.
- Rather than even counting basic steps, just fill up tue output array from is lex p up through and including indent.

Pseudocode
$\operatorname{Merge}(A, p, q, r)$

$$
\begin{aligned}
& n_{1}=q-p+1 \\
& n_{2}=r-q \\
& \text { let } L\left[1 \ldots n_{1}+1\right] \text { and } R\left[1 \ldots n_{2}+1\right] \text { be new arrays } \\
& \text { for } i=1 \text { to } n_{1} \\
& \quad L[i]=A[p+i-1] \\
& \text { for } j=1 \text { to } n_{2} \\
& R[j]=A[q+j] \\
& L\left[n_{1}+1\right]=\infty \\
& R\left[n_{2}+1\right]=\infty \\
& i=1 \\
& j=1 \\
& \text { for } k=p \text { to } r \\
& \text { if } L[i] \leq R[j] \\
& \quad A[k]=L[i] \\
& i=i+1 \\
& \text { else } A[k]=R[j] \\
& j=j+1 \\
& \quad=j+1
\end{aligned}
$$

We used a loop invariant to Show that MERGE wovas correctly. Now let's also loole at an example to demonstrate that tue procedure worles correctly.
$E x$

$$
\text { A call of MERGE }(9,12,16)
$$

Analyzing divide-and-conguer algorithms
Use a recurrence equation (more commonly, a recurrence) to describe the running tine of a divide-and-coupuer algorithm.

Let $T(n)=$ running time on a problem e of size n.

- If problem size is mall enough /stay, $n \leq c$ for some constant C), we have a base case. The brute-frice solution takes coust time : $\Theta(1)$.
- Otherwise, suppose that we divide into a subproblems, each "b the size of the original. (In merge sort, $a=b=2$.)
- Let time to divide a size-n problem be $D(n)$
- Have a rubproblems to solve, each of size $n / b \Rightarrow$ each subproblem takes T(U/b) tine to solve \Rightarrow we trend a $T(n / b)$ true to solve a subproblenes.
- Let tue time to combine solutions be C(U).
- We get tue recurrence

$$
T(n)= \begin{cases}\theta(1) & \text { if } n \leq c \\ a T(n / b)+D(n)+C(n) & \text { otherwise }\end{cases}
$$

Analyzing merge sort
For simplicity, assume that n is a power of 2 \Rightarrow each divide step yields two subproblems, both of size exactly n/2.

The base case occurs when $n=1$. When $n \geqslant 2$, time for merge sort steps:

Divide: Just compute g as the average of ρ and $r \Rightarrow D(u)=\theta(1)$.

Conquer: Recursively solve 2 nubproblerns, each of size $n / 2 \Rightarrow 2 T(n / 2)$.

Combine: MERGE on an n-element subarray takes $\Theta(n)$ time $\Rightarrow C(u)=\Theta(n)$.

Since $D(u)=\Theta(1)$ and $C(u)=\Theta(u)$, summed together thy give a function that is linear in $n: \Theta(u) \Rightarrow$ reccureuce for merge tort running tine is

$$
T(n)= \begin{cases}\Theta(1), & \text { if } n=1 \\ 2 T(n / 2)+\Theta(u), & \text { if } n>1\end{cases}
$$

Solving the merge-dort recurrence
By tue master Theorem in Chapter 4 (Tho Hl more-later), we can show that this recurrence has tue solution $T(n)=\Theta(n \lg n)$.

Note: $\lg n=\log _{2} n$.
Compared to cirtertion sort ($\Theta\left(n^{2}\right)$ worrt-case tivel), merge sort is faster. Trading a tues n for a factor of $\lg n$ is a good deal.

On small inputs, cisertion sort may be faster. But for large enough inputs, merge sort will always be faster, because its running sine
grows more slowly than cistertion sort's.
We can understand how to solve the merge-oort recurrence without the master theorem.

- Let C be a constant the describes the running sine tor the base case and also is the tine per array element for the divide and conquer steps.
- We rewrite tue recurrence as

$$
T(n)= \begin{cases}c & \text { if } n=1, \\ 2 T(n / 2)+c n & \text { if } n>1\end{cases}
$$

- Draw a recursion tree, whin snows successive expansion of the recurrence.
- For the original problem, we have a cost of cn , plus two subproblem, each costing $T(4 / 2)$:

- For each of the size n/2 subproblem, we lave a cost of $\mathrm{cn} / 2$, plus two nubproblens, each costing $T(\mathrm{u} / \mathrm{y})$:

- Continue expanding utile the problem sizes get down to 1 :

Total: $c n \lg n+c n$

- Each level has cost ck.
* The top level has cost cu.
* The next level down has 2 subproblenes, each contributing cost cn/2.
* The next level has 4 dubproblens, each contributive cost cult.
* Each tine we go down one level, tue number of subprobleny doubles but tue cost per subproblem halves \Rightarrow cost per level stays tue same.
- There are $\lg n+1$ levels (height is $\lg n$).
* Use induction.
* Base case: $n=1 \Rightarrow 1$ level, and

$$
\lg 1+1=0+1=1
$$

* Inductive Gupotuesis is that a tree for a problem size 2^{i} las $\lg 2^{i}+1=i+1$ levels.
* Because we assume frat the problem size is a power of 2 , tue next problem size up is after 2^{i} is 2^{i+1}.
* a tree for a problem size of 2^{i+1} has one mors level than tue size - 2^{i} tree $\Rightarrow i+2$ levels
* Since $\lg 2^{i+1}+1=i+2$, we are done with inductive argument.
- Total cost is sum of costs at each level. Have $\lg n+1$ levels, each coring $\mathrm{cn} \Rightarrow$ total cost is $\mathrm{cn} \lg n+\mathrm{cn}$.
- Ignore low-order term of cn and const coefficilut $c \Rightarrow \theta(n \lg n)$.

