



































































































































More on Merge fort

Because we are dealing
wit subproblems

we state each subproblem as sorting a

subarray Acp r Initially pal an

but these values change as we reverse

through subproblems

To sort Acp r

Divide by splitting
into two arrays

ACP q and Acqte D where q is

fue halfway point of Acp r

conquer by recursively sorting the
two

subarrays ACP q and Acqte r

combine by merging the
two sorted

subarrays Acp A and Acqte r to









































































































produce
a single sorted tubarray Acp r

To accomplish this step we use a

procedure MERGE CA Pig r

The recursion bottoms out when the

subarray
has just 1 element so that it's

trivially sorted

g ptr 2 floor of PE

EI pal F 8 8 1112 L E 4








































































































































A 5 2 4,7 1 3 2 63 original array

A 1 2 2 3 Y 5 6,7 forted array

g LES LES Y

q L 1 2 9 1541 6

g L'E 1 q LES 3

etc








































































































































EI PI FA q L E 2 1 6

A 4,712 6,1 Y 7,3 5 2,6

I

A 1,2 2,3 44,516,6 773

q L 1 6

g L'E 3 q FI 9

g L 1 2 q EEE






































































































































More on merging

Let's discuss the MERGE procedure

Input Array A and indices pig r such fun

pager

Subarray Acp gj is sorted and

subarray Acqte
r is sorted By the

restrictions on p q r neither subarray is

empty

Output The two subarrays are merged

into a single tub array in Acp r

We implement
it so that it takes Ca

time where n r pts the neuriber of

elements being merged

What is n Originally we think of u

as of the size of
the problem But now

we're using
it as the size of a






































































































































subproblem We will use this technique

when we analyze recursive algorithms

Although we may
devote the original

problem size by n in general n will

be the size of a given subproblem

Idea behind linear time merging

Think of two piles of
cards

Each pile is sorted and placed face up

on a table with the smallest cards on top

We will merge
these cards into a

single sorted pile
face down on the table

A basic step

Choose the smaller of the two cards

Remove it from its pile thereby

exposing
a new top card

Place the chosen card face down

onto the output pile






































































































































Repeatedly perform basic steps until

one input pile is empty

Once one input pile empties just
take

the remaining input pile
and place it

face down onto the output pile

Each basic step should take constant time

since we just check
the two top cards

There are In basic steps since each basic

step removes one card from the input piles

and we start with a cards in the input

piles

We don't actually need to check whether a

pile is empty before each basic step

Put on the bottom of each input file

a special sentinel
card

It contains a special value that we

use to simplify the code






































































































































We use is since that's guaranteed
to

lose to any
other value

The only way that is cannot lose is

when both piles have a exposed as

their top cards

But when that happens all the nonsentine

cards have already been placed into the

output pile

We know in advance
that there are

exactly r p.tl non sentinel cards

stop once we performed
r pre basic

steps
Never a need to check for

sentinels since they'll always
lose

Rather than
even counting

basic

steps just fill up the output array

from index p up through
and

including index r







































































































































We used a loop invariant to show

that MERGE works correctly Now let's

also look at an example to demonstrate

that the procedure
works correctly

EI
a call of MERGE 912,16




































































































































































Analyzing divide and conquer algorithms

Use a recurrence equation
more commonly

a recurrence to describe the running true

of a divide and conquer algorithm

Let Tin running time on a problem of

size n

If problem size is small enough say

nee for some constant c we have a base

case The brute force solution takes coast

time Oci

Otherwise suppose that
we divide into a

tubproblems
each the size of the original

In merge sort a 6 2

Let time to divide a size n problem be

Dla

Have a tubproblems to solve each of

size Nb each subproblem takes TCU

time to solve
we spend at Ye true

to solve a tubproblems








Let the time to combine solutions be Ccu

We get the recurrence

Tin W
it nee

ATC e Din Ccn otherwise

Analyzing merge tort

For simplicity assume that u is a power of 2

each divide step yields two redproblems

both of size exactly
12

The base case occurs when n e

When 47,2 time for merge sort steps

Divide Just compute q as the average of

p and r Dca OG

Conquer Recursively solve 2 subproblem

each of size 42 2 4 2

Combine MERGE on an n element

tubarray takes n time Clu Qiu



Since D n 06 and Cla Ola summed

together they give
a function that is linear

in n
u recurrence for merge tort

running time
is

Ii if 4 1

Th
stink Qiu if a 1

Solving the merge tort recurrence

By the master theorem in Chapter 4 Thm 4.1

more later we can show that this recurrence

has the solution Tn alga

Not lgn logan

Compared
to intertion tort uz worst case

time merge tort is faster Trading a factor

n for a factor of ly n is a good deal

On small inputs insertion tort may
be faster

But for large enough inputs merge tort will

always be faster because its running the



grows
more slowly than insertion sort's

We can understand how to solve the

merge
sort recurrence without the master theorem

Let c be a constant the describes the running

fine for the base case and also is the time

per array
element for the divide and

conquer steps

We rewrite the recurrence as

c if na

Tin atala ten if hi

Draw a recursion tree which shows

successive expansion of the
recurrence

For the original problem
we have a cost

of en plus two tubproblems each costing TCL



For each of the size la tubproblem we have

a cost of
ch 2 plus two tubproblems each

costing Ye

Continue expanding until the problem

sizes get down to 1



Each level has cost en

The top level has cost cu

The next level down has 2

subproblems each contributing cost cuz

The next level has 4 subproblem

each contributing cost ca 4

Each time we go
down one level

the number of tubproblems
doubles

but the cost per subproblem
halves

cost per level stays the tame

There are lgnt1 levels height

is lgn
Use induction

Base case nel 1 level and

lg t t 1 0 1 L



Inductive hypothesis is that a

tree for a problem size 2 has

lg 2 t l ite levels

Because we assume that the

problem size is a power of 2 the

next problem size up is after 2 is

it

A tree for a problem size of

2
t
has one more level than the

size 2 tree it 2 levels

fine ly 2 I it2 we are done

with inductive argument

Total cost is sum of costs at each

level Have lyntt levels each

costing
en total cost is enlighten



Ignore
low order term of an and

coat coefficient c alyn


